一种改进全卷积网络的遥感影像变化检测An Improved Fully Convolutional Network for Remote Sensing Imagery Change Detection
宋文宣;彭代锋;
摘要(Abstract):
针对传统变化检测方法依赖特征工程且自动化程度不高的问题,提出了一种基于改进全卷积网络的变化检测方法,可自动学习多层次特征图,实现端到端的变化检测。首先,将两期影像输入到两个共享权重的编码器以分别提取多维度特征图,并构造差值特征图以有效融合变化信息;然后,利用扩张卷积模块增加感受野以有效捕捉多尺度变化信息;最后,通过解码器层逐步增大特征图分辨率的同时恢复影像细节信息,并利用sigmoid层生成最终变化图。通过高分辨率遥感影像变化检测实验表明,该方法可显著降低变化检测虚检率和漏检率,提高变化检测的精度和可靠性。
关键词(KeyWords): 变化检测;全卷积网络;多层次特征图;编码器;解码器
基金项目(Foundation): 国家自然科学基金项目(41801386);; 江苏省自然科学基金项目(BK20180797)
作者(Authors): 宋文宣;彭代锋;
参考文献(References):
- [1] 张良培,武辰.多时相遥感影像变化检测的现状与展望[J].测绘学报,2017,46(10):1447-1459.
- [2] 眭海刚,冯文卿,李文卓,等.多时相遥感影像变化检测方法综述[J].武汉大学学报(信息科学版),2018,43(12):1885-1898.
- [3] 佟国峰,李勇,丁伟利,等.遥感影像变化检测算法综述[J].中国图象图形学报,2015,20(12):1561-1571.
- [4] HUSSAIN M,CHEN D,CHENG A,et al.Change detection from remotely sensed images:from pixel-based to object-based approaches[J].ISPRS journal of photogrammetry and remote sensing,2013,80:91-106.
- [5] 王桂婷,王幼亮,焦李成.基于快速EM算法和模糊融合的多波段遥感影像变化检测[J].红外与毫米波学报,2010,29(5):383-388.
- [6] CELIK T.Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J].IEEE geoscience and remote sensing letters,2009,6(4):772-776.
- [7] 吕鹏远,钟燕飞,赵济,等.基于空-谱先验条件随机场的高分辨率遥感影像变化检测方法简[J].南京信息工程大学学报(自然科学版),2018(1):123-130.
- [8] 李亮,舒宁,王琰.利用归一化互信息进行基于像斑的遥感影像变化检测[J].遥感信息,2011,26(6):18-22.
- [9] 冯文卿,张永军.利用多尺度融合进行面向对象的遥感影像变化检测[J].测绘学报,2015,44(10):1142-1151.
- [10] WANG B,CHOI S,BYUN Y,et al.Object-based change detection of very high resolution satellite imagery using the cross-sharpening of multitemporal data[J].IEEE geoscience and remote sensing letters,2015,12(5):1151-1155.
- [11] CHEN Q,CHEN Y,JIANG W.Genetic particle swarm optimization-based feature selection for very-high-resolution remotely sensed imagery object change detection[J].Sensors,2016,16(8):1204.
- [12] ZHANG H,GONG M,ZHANG P,et al.Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J].IEEE geoscience and remote sensing letters,2016,13(11):1666-1670.
- [13] HOU B,WANG Y,LIU Q.Change detection based on deep features and low rank[J].IEEE geoscience and remote sensing letters,2017,14(12):2418-2422.
- [14] DAUDT R C,LE SAUX B,BOULCH A,et al.Urban change detection for multispectral earth observation using convolutional neural networks[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Valencia,Spain:IEEE,2018:2115-2118.
- [15] MOU L,BRUZZONE L,ZHU X X.Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J].IEEE transactions on geoscience and remote sensing,2018,57(2):924-935.
- [16] 万冉冉,陈娟,廖明伟,等.基于Siamese卷积神经网络的影像瓦片变化检测技术[J].测绘通报,2020,517(4):99-103,132.
- [17] DAUDT R C,LE SAUX B,BOULCH A.Fully convolutional siamese networks for change detection[C]//Proceedings of 25th IEEE International Conference on Image Processing (ICIP).MAICC,Greece:IEEE,2018:4063-4067.
- [18] LEI T,ZHANG Y,LV Z,et al.Landslide inventory mapping from bitemporal images using deep convolutional neural networks[J].IEEE geoscience and remote sensing letters,2019,16(6):982-986.
- [19] JI S,WEI S,LU M.Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J].IEEE transactions on geoscience and remote sensing,2018,57(1):574-586.
- [20] LEBEDEV M A,VIZILTER Y V,VYGOLOV O V,et al.Change detection in remote sensing images using conditional adversarial networks[J].International archives of the photogrammetry,remote sensing and spatial information sciences,2018,42(2):471.
- [21] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE transactions on pattern analysis and machine intelligence,2017,39(12):2481-2495.
- [22] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention.[S.l.]:Springer,2015:234-241.