密度聚类算法在光子点云去噪中的应用与评价Application and Evaluation of Density Clustering Algorithm in Photon Point Cloud Denoising
曹彬才;王建荣;胡燕;吕源;杨秀策;
摘要(Abstract):
针对密度聚类算法DBSCAN在ICESat-2激光点云去噪时关键参数无法自适应确定、应用效能差等问题,提出了一种基于最终聚类数和光子特点的DBSCAN参数寻优方法。该方法根据ICESat-2光子剖面数据分布情况,将参数邻域最小点数MinPts设置为经验值,根据最终聚类个数与K平均最邻近法确定半径参数Eps最佳值。采用多种类型ICESat-2数据开展去噪能力验证。实验结果表明:DBSCAN算法最小点参数MinPts可以采用经验参数,搜索半径Eps虽然能自适应确定,但计算代价较大。对多组实验数据的去噪结果表明,DBSCAN整体去噪精度优于97%,能够较为有效地处理光子噪声。
关键词(KeyWords): 光子计数;激光雷达;空间聚类;自适应;去噪算法
基金项目(Foundation): 地理信息工程国家重点实验室自立项目(D19901-SKLGIE2022-ZZ-01);; 青年自主创新科学基金项目(2023-01)
作者(Authors): 曹彬才;王建荣;胡燕;吕源;杨秀策;
参考文献(References):
- [1] MARKUS T,NEUMANN T,MARTINO A,et al.The ice,cloud,and land elevation satellite-2 (ICESat-2):science requirements,concept,and implementation [J].Remote sensing of environment,2017,190:260-273.
- [2] 方勇,曹彬才,高力,等.激光雷达测绘卫星发展及应用[J].红外与激光工程,2020,49(11):19-27.
- [3] 曹彬才,方勇,江振治,等.ICESat-2激光卫星与光学遥感影像融合水深测量[J].海洋测绘,2020,40(5):21-25.
- [4] CAO B C,FANG Y,GAO L,et al.An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery [J].International journal of remote sensing,2021,42(8):2783-2806.
- [5] 谢锋,杨贵,舒嵘,等.方向自适应的光子计数激光雷达滤波方法[J].红外与毫米波学报,2017,36(1):107-113.
- [6] 焦慧慧,谢俊峰,刘仁,等.星载对地观测光子计数激光雷达去噪方法浅析[J].航天返回与遥感,2021,42(5):140-150.
- [7] MAGRUDER L A,WHARTON M E,STOUT K D,et al.Noise filtering techniques for photon-counting LADAR data[J].Proceedings of SPIE,2012,8379(2):24.
- [8] GWENZI D,LEFSKV M A,SUCHDEO V P,et al.Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data [J].ISPRS journal of photogrammetry and remote sensing,2016,118:68-82.
- [9] 曹彬才,方勇,江振治,等.基于空间密度自适应的单光子激光点云去噪算法[J].测绘科学与工程,2019,39(4):13-17.
- [10] 秦磊,邢艳秋,黄佳鹏,等.ICESat-2机载实验光子云数据自适应去噪及分类算法[J].遥感学报,2020,24(12):1476-1487.
- [11] 陈博伟,庞勇,李增元,等.基于随机森林的光子计数激光雷达点云滤波[J],地球信息科学,2019,21(6):898-906.
- [12] ZHANG J,KEREKES J.An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data [J].IEEE geoscience and remote sensing letters,2014,12(4):726-730.
- [13] MA Y,XU N,LIU Z et al.Satellite-derived bathymetry using the ICESat-2 LiDAR and Sentinel-2 imagery datasets [J].Remote sensing of environment,2020,250:112047.
- [14] 李文杰,闫世强,蒋莹,等.自适应确定DBSCAN算法参数的算法研究[J].计算机工程与应用,2019,55(5):1-7,148.
- [15] 魏硕,赵楠翔,李敏乐,等.结合改进DBSCAN和统计滤波的单光子去噪算法[J].激光技术,2021,45(5):6.
- [16] ESTER M,KRIEGEL H P,XU X.A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of International Conference on Knowledge Discovery and Data Mining.[S.l.]:[s.n.],1996:226-231.
- [17] 曹彬才,方勇,江振治,等.ICESat-2 ATL08去噪算法实现及精度评价[J].测绘通报,2020(5):25-30.
- [18] POPESCU S C,ZHOU T,NELSON R,et al.Photon counting LiDAR:an adaptive ground and canopy height retrieval algorithm for ICESat-2 data [J].Remote sensing of environment,2018,208:154-170.
- [19] NASA.ICE,cloud,and land elevation satellite (ICESat-2) algorithm theoretical basis document (ATBD) for global geolocated photons (ATL03) [EB/OL].(2019-10-15) [2021-02-25].https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL03_ATBD_r001.pdf.